翻訳と辞書
Words near each other
・ Lovro Mihačević
・ Lovro Monti
・ Lovro Radonjić
・ Lovro Toman
・ Lovro von Matačić
・ Lovro Zovko
・ Lovro Šturm
・ Lovro Šćrbec
・ Lovsko Brdo
・ Lovtidende
・ Lovumba
・ Lovund
・ Lovund Church
・ Lovzar
・ Lovász
Lovász conjecture
・ Lovász local lemma
・ Lovász number
・ Lovászhetény
・ Lovászi
・ Lovászpatona
・ Lovénberget
・ Lovénvatnet
・ Lovénøyane
・ Lovö Runestones
・ Lovön
・ Lovćen
・ Lovćen Brigade
・ Lovćenac
・ Lovča


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lovász conjecture : ウィキペディア英語版
Lovász conjecture
In graph theory, the Lovász conjecture (1970) is a classical problem on Hamiltonian paths in graphs. It says:
: Every finite connected vertex-transitive graph contains a Hamiltonian path.
The original article of Lovász stated the result in the opposite, but
this version became standard. In 1996 Babai published a conjecture sharply contradicting this conjecture,〔L. Babai, (Automorphism groups, isomorphism, reconstruction ), in ''Handbook of Combinatorics'', Vol. 2, Elsevier, 1996, 1447-1540.〕 but both conjectures remain widely open.
It is not even known if a single counterexample would necessarily lead to a series of counterexamples.
== Historical remarks ==
The problem of finding Hamiltonian paths in highly symmetric graphs is quite old.
As Knuth describes it in volume 4 of ''The Art of Computer Programming'',〔D. E. Knuth, The Art of Computer Programming, Vol. 4, draft of section 7.2.1.2.〕 the problem originated in British campanology (bell-ringing). Such Hamiltonian paths and cycles are also closely connected to Gray codes. In each case the constructions are explicit.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lovász conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.